Processing math: 0%

Tuesday, April 24, 2018

A List of Integrals and Identities


A list the integrals and identities used in solving the problem in this post.

Throughout this post we consider 0<\alpha, \gamma,r \leq 1 and a, b, c, k is a non-negative integer.


(1) I'm not sure where I saw this. I'll update the reference if I find it. UPDATE: I found the reference. It's given in Advances in Combinatorial Methods and Applications to Probability and Statistics

\displaystyle\sum_{a,b,c \geq 0 \\ a+b+c=n \\ a-c=k}\binom{n}{a,b,c}\alpha^a(1-\alpha-\gamma)^b\gamma^c=\frac{(\alpha/\gamma)^{k/2}}{\pi}\int_0^\pi  \cos k\theta\text{ } (1-\alpha-\gamma+2\sqrt{\alpha\gamma}\cos \theta)^n \, d\theta


(2) This is given in Generality of algebra. Anyway, this is easy to prove if we recognize r^k \cos kx=\text{Re}(r^k e^{ikx}) and it's just a geometric series.

1+r\cos x+r^2 \cos 2x+r^3 \cos 3x+\cdots=\displaystyle\frac{1-r\cos x}{1-2r\cos x+r^2}


(3) This is just pattern recognition by using different values in Mathematica.

\displaystyle\int \frac{1-r \cos x}{1-2r \cos x +r^2}\,dx=\frac{x}{2}+\tan^{-1}\left(\frac{1+r}{1-r}\tan\left(\frac{x}{2}\right)\right)+\text{constant}

Interestingly,

\displaystyle\frac{1}{\pi}\int_0^\pi \frac{1-r \cos x}{1-2r \cos x +r^2}\,dx=H[1-r]

where H[x] is the Heaviside Unit step function.


(4) I definitely saw this Wikipedia. But again I couldn't find it now. UPDATE: Found this too in List of definite integrals.

\displaystyle\frac{1}{\pi}\int_0^\pi\frac{\cos kx}{\sec \phi-\cos x}\,dx=\frac{(\sec \phi - \tan \phi)^k}{\tan \phi}


(5) Using k=0 in (4),

\displaystyle\frac{1}{\pi}\int_0^\pi\frac{1}{\sec \phi-\cos x}\,dx=\cot\phi


(6) Multiplying (4) by r^k and summing across all k,

\displaystyle\frac{1}{\pi}\int_0^\pi\frac{1+r\cos x+r^2 \cos 2x+r^3 \cos 3x+\cdots}{\sec \phi-\cos x}\,dx=\frac{\cot \phi}{1-r(\sec \phi - \tan \phi)}



Until then
Yours Aye
Me

No comments:

Post a Comment